首页 | 本学科首页   官方微博 | 高级检索  
     


Development of large-scale stacked-type electrostatic actuators for use as artificial muscles
Authors:Makoto Ito  Keiji Saneyoshi
Affiliation:1. Department of Physics, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.itou.m.ag@m.titech.ac.jp;3. Radiation Research and Management Center, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.
Abstract:Electrostatic actuators have the advantages of light weight, flexibility, and high energy efficiency, which make them suitable for use as artificial muscles. However, a traditional electrostatic actuator cannot generate long strokes and a high force density at the same time because such actuator would excessively widen the gap between the electrodes because of its structure. This paper presents a newly developed large-scale stacked-type electrostatic actuator (LSEA) intended for use as an artificial muscle for robots. LSEA is a multi-stacked electrostatic actuator that can be linearly contracted by the application of a voltage. It has a unique structure that prevents overextension of the gap between the electrodes. It can therefore generate a large force. The spring characteristics and the relationship between the contractive force and the stroke were experimentally determined. The findings showed that LSEA prevents the overextension of the gap between the electrodes and has a high contraction ratio that is equivalent to that of a mammalian skeletal muscle.
Keywords:electrostatic actuator  artificial muscle
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号