首页 | 本学科首页   官方微博 | 高级检索  
     


A formal framework for verifying distributed embedded systems based on abstraction methods
Authors:Francois Carcenac  Frederic Boniol
Affiliation:(1) ONERA-CERT, Toulouse, France
Abstract:This paper presents a formal framework for verifying distributed embedded systems. An embedded system is described as a set of concurrent real time functions which communicate through a network of interconnected switches involving messages queues and routing services.In order to allow requirements verification, such a model is then translated into timed automata. However, the complexity inherent in distributed embedded systems often does not allow to apply model checking techniques. Consequently, the paper presents an abstraction-based verification method which consists in abstracting the communication network by end-to-end timed channels. To prove a given safety property φ requires then (1) to prove a set of proof obligations ensuring the correctness of the abstraction step (i.e. the end-to-end channels correctly abstract the network), and (2) to prove φ at the abstract level. The expected advantage of such a method lies in the ability to overcome the combinatorial explosion frequently met when verifying complex systems. This method is illustrated by an avionic case study.
Keywords:Distributed embedded systems  Timed automata  Model checking  Abstraction  Compositional verification
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号