首页 | 本学科首页   官方微博 | 高级检索  
     


Fast Structured Prediction Using Large Margin Sigmoid Belief Networks
Authors:Xu Miao  Rajesh P N Rao
Affiliation:1. Computer Science and Engineering, University of Washington, Seattle, WA, 98125, USA
Abstract:Images usually contain multiple objects that are semantically related to one another. Mapping from low-level visual features to mutually dependent high-level semantics can be formulated as a structured prediction problem. Current statistical models for structured prediction make simplifying assumptions about the underlying output graph structure, such as assuming a low-order Markov chain, because exact inference becomes intractable as the tree-width of the underlying graph increases. Approximate inference algorithms, on the other hand, force one to trade off representational power with computational efficiency. In this paper, we present large margin sigmoid belief networks (LMSBNs) for structured prediction in images. LMSBNs allow a very fast inference algorithm for arbitrary graph structures that runs in polynomial time with high probability. This probability is data-distribution dependent and is maximized in learning. The new approach overcomes the representation-efficiency trade-off in previous models and allows fast structured prediction with complicated graph structures. We present results from applying a fully connected model to semantic image annotation, image retrieval and optical character recognition (OCR) problems, and demonstrate that the proposed approach can yield significant performance gains over current state-of-the-art methods.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号