首页 | 本学科首页   官方微博 | 高级检索  
     


3D Human Motion Tracking with a Coordinated Mixture of Factor Analyzers
Authors:Rui Li  Tai-Peng Tian  Stan Sclaroff  Ming-Hsuan Yang
Affiliation:1. Computer Science Department, Boston University, Boston, MA, 02215, USA
2. Electrical Engineering and Computer Science, University of California, Merced, CA, 95344, USA
Abstract:A major challenge in applying Bayesian tracking methods for tracking 3D human body pose is the high dimensionality of the pose state space. It has been observed that the 3D human body pose parameters typically can be assumed to lie on a low-dimensional manifold embedded in the high-dimensional space. The goal of this work is to approximate the low-dimensional manifold so that a low-dimensional state vector can be obtained for efficient and effective Bayesian tracking. To achieve this goal, a globally coordinated mixture of factor analyzers is learned from motion capture data. Each factor analyzer in the mixture is a “locally linear dimensionality reducer” that approximates a part of the manifold. The global parametrization of the manifold is obtained by aligning these locally linear pieces in a global coordinate system. To enable automatic and optimal selection of the number of factor analyzers and the dimensionality of the manifold, a variational Bayesian formulation of the globally coordinated mixture of factor analyzers is proposed. The advantages of the proposed model are demonstrated in a multiple hypothesis tracker for tracking 3D human body pose. Quantitative comparisons on benchmark datasets show that the proposed method produces more accurate 3D pose estimates over time than those obtained from two previously proposed Bayesian tracking methods.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号