首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于多尺度轮廓结构元素的多形状边缘检测
引用本文:熊立志,陈立潮,潘理虎,闫慧敏,张晓艳.基于多尺度轮廓结构元素的多形状边缘检测[J].计算机应用研究,2012,29(9):3497-3500.
作者姓名:熊立志  陈立潮  潘理虎  闫慧敏  张晓艳
作者单位:1. 太原科技大学 计算机学院,太原,030024
2. 1. 太原科技大学 计算机学院, 太原 030024; 2. 中国科学院地理科学与资源研究所, 北京 100101
3. 中国科学院地理科学与资源研究所,北京,100101
基金项目:中国科学院知识创新工程重要方向资助项目(KZCX2-EW-306); 国家自然基金资助项目(41071344); 太原科技大学博士创新基金资助项目(20102030)
摘    要:在图像边缘检测过程中,针对滤除噪声及有效保留图像边缘信息这对矛盾点进行了研究,给出一种基于多尺度轮廓结构元素的多形状边缘检测算法。该算法通过多次使用轮廓结构元素的开最大和闭最小运算操作滤除噪声,运算次数通过比较图像峰值信噪比确定,降低结构元素对边缘信息的影响;然后采用多形状多尺度结构元素提取图像边缘,并利用图像峰值信噪比控制结构元素尺度的选取。与经典边缘检测算法相比,该算法具有更强的去噪声能力,且能保留更多的图像细节。仿真实验表明,有区别地使用轮廓结构元素及多形状多尺度结构元素,能有效去噪并保留边缘信息。

关 键 词:多尺度  轮廓结构元素  数学形态学  边缘检测  多形状结构元素

Morphologic edge detection based on multi-scale contour structuring elements with multiple structuring elements
XIONG Li-zhi,CHEN Li-chao,PAN Li-hu,YAN Hui-min,ZHANG Xiao-yan.Morphologic edge detection based on multi-scale contour structuring elements with multiple structuring elements[J].Application Research of Computers,2012,29(9):3497-3500.
Authors:XIONG Li-zhi  CHEN Li-chao  PAN Li-hu  YAN Hui-min  ZHANG Xiao-yan
Institution:1. School of Computer Science & Technology, Taiyuan University of Science & Technology, Taiyuan 030024, China; 2. Institute of Geographic Sciences & Natural Resources Research, Chinese Academic of Sciences, Beijing 100101, China
Abstract:Based on the research about how to keep more edge information effectively while filtering the noise in the process of image edge detection, this paper proposed an edge detection algorithm based on multi-scale contour structuring elements with multiple structuring elements. Firstly, it adopted a class of open maximum and close minimum morphological filter by using multi-scale contour structuring elements several times determined by the peak signal noise ratioPSNR, thereby reducing it on the impact of the edge. Then, it adopted multiple structuring elements to extract the edge, determined the scale of the multiple structuring elements by the PSNR. Compared with the classical edge detection algorithm, this algorithm had robust ability to filter the noise, and could retain more edge information. Experimental results show that using the multi-scale contour structuring elements and the multiple structuring elements differently can filter the noise effectively and retain the edge information.
Keywords:multi-scale  contour structuring element  mathematical morphology  edge detection  multiple structuring elements
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号