基于深度序列加权核极限学习的入侵检测算法 |
| |
作者姓名: | 汪洋 伍忠东 朱婧 |
| |
作者单位: | 兰州交通大学 电子与信息工程学院,兰州730070;兰州交通大学 电子与信息工程学院,兰州730070;兰州交通大学 电子与信息工程学院,兰州730070 |
| |
基金项目: | 甘肃省高等学校创新团队项目;中国铁路总公司科技研究开发计划重大课题 |
| |
摘 要: | 针对海量多源异构且数据分布不平衡的网络入侵检测问题以及传统深度学习算法无法根据实时入侵情况在线更新其输出权重的问题,提出了一种基于深度序列加权核极限学习的入侵检测算法(DBN-WOS-KELM算法)。该算法先使用深度信念网络DBN对历史数据进行学习,完成对原始数据的特征提取和数据降维,再利用加权序列核极限学习机进行监督学习完成入侵识别,结合了深度信念网络提取抽象特征的能力以及核极限学习机的快速学习能力。最后在部分KDD99数据集上进行了仿真实验,实验结果表明DBN-WOS-KELM算法提高了对小样本攻击的识别率,并且能够根据实际情况在线更新输出权重,训练效率更高。
|
关 键 词: | 深度信念网络 序列学习 核极限学习 样本加权 入侵检测 |
收稿时间: | 2018-08-26 |
修稿时间: | 2020-01-21 |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《计算机应用研究》浏览原始摘要信息 |
|
点击此处可从《计算机应用研究》下载全文 |
|