首页 | 本学科首页   官方微博 | 高级检索  
     


Blending surface generation using a fast and accurate analytical solution of a fourth-order PDE with three shape control parameters
Authors:Lihua You  Jian J Zhang  Peter Comninos
Affiliation:(1) National Centre for Computer Animation, Bournemouth Media School, Bournemouth University, Dorset, BH12 5BB, United Kingdom
Abstract:In this paper, we propose to use a fourth-order partial differential equation (PDE) to solve a class of surface-blending problems. This equation has three vector-valued shape control parameters. It incorporates all the previously published forms of fourth-order PDEs for surface blending and can generate a larger class of blending surfaces than existing equations. To apply the proposed PDE to the solution of various blending problems, we have developed a fast and accurate resolution method. Our method modifies Navierrsquos solution for the elastic bending deformation of thin plates by making it satisfy the boundary conditions exactly. A comparison between our method, the closed-form solution method, and other existing analytical methods indicates that the developed method is able to generate blending surfaces almost as quickly and accurately as the closed-form solution method, far more efficiently and accurately than the numerical methods and other existing analytical methods. Having investigated the effects that the vector-valued shape parameters and the force function of the proposed equation have on the blending surface, we have found that they have a significant influence on its shape. They provide flexible user handles that surface designers can use to adjust the blending surface to acquire the desired shape. The developed method was employed in the investigation of surface-blending problems where the primary surfaces were expressed in parametric, implicit, and explicit forms.
Keywords:Surface blending  Fourth-order partial differential equations  Fast and accurate PDE solution  Vector-valued shape parameters  Force function
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号