首页 | 本学科首页   官方微博 | 高级检索  
     


Transfer of Learning by Composing Solutions of Elemental Sequential Tasks
Authors:Satinder Pal Singh
Affiliation:(1) Department of Computer Science, University of Massachusetts, Amherst, MA, 01003
Abstract:Although building sophisticated learning agents that operate in complex environments will require learning to perform multiple tasks, most applications of reinforcement learning have focused on single tasks. In this paper I consider a class of sequential decision tasks (SDTs), called composite sequential decision tasks, formed by temporally concatenating a number of elemental sequential decision tasks. Elemental SDTs cannot be decomposed into simpler SDTs. I consider a learning agent that has to learn to solve a set of elemental and composite SDTs. I assume that the structure of the composite tasks is unknown to the learning agent. The straightforward application of reinforcement learning to multiple tasks requires learning the tasks separately, which can waste computational resources, both memory and time. I present a new learning algorithm and a modular architecture that learns the decomposition of composite SDTs, and achieves transfer of learning by sharing the solutions of elemental SDTs across multiple composite SDTs. The solution of a composite SDT is constructed by computationally inexpensive modifications of the solutions of its constituent elemental SDTs. I provide a proof of one aspect of the learning algorithm.
Keywords:Reinforcement learning  compositional learning  modular architecture  transfer of learning
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号