首页 | 本学科首页   官方微博 | 高级检索  
     


High-fidelity aerostructural optimization with integrated geometry parameterization and mesh movement
Authors:Zimi J Zhang  Shahriar Khosravi  David W Zingg
Affiliation:1.University of Toronto Institute for Aerospace Studies,Toronto,Canada
Abstract:This paper extends an integrated geometry parameterization and mesh movement strategy for aerodynamic shape optimization to high-fidelity aerostructural optimization based on steady analysis. This approach provides an analytical geometry representation while enabling efficient mesh movement even for very large shape changes, thus facilitating efficient and robust aerostructural optimization. The geometry parameterization methodology uses B-spline surface patches to describe the undeflected design and flying shapes with a compact yet flexible set of parameters. The geometries represented are therefore independent of the mesh used for the flow analysis, which is an important advantage to this approach. The geometry parameterization is integrated with an efficient and robust grid movement algorithm which operates on a set of B-spline volumes that parameterize and control the flow grid. A simple technique is introduced to translate the shape changes described by the geometry parameterization to the internal structure. A three-field formulation of the discrete aerostructural residual is adopted, coupling the mesh movement equations with the discretized three-dimensional inviscid flow equations, as well as a linear structural analysis. Gradients needed for optimization are computed with a three-field coupled adjoint approach. Capabilities of the framework are demonstrated via a number of applications involving substantial geometric changes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号