首页 | 本学科首页   官方微博 | 高级检索  
     


Design of buckling-induced mechanical metamaterials for energy absorption using topology optimization
Authors:Qi Chen  Xianmin Zhang  Benliang Zhu
Affiliation:1.Guangdong Key Laboratory of Precision Equipment and Manufacturing Technology,South China University of Technology,Guangzhou,China
Abstract:A novel design concept for buckling-induced mechanical metamaterials for energy absorption is presented. The force-displacement curves of the mechanical metamaterials are analyzed according to the curves of their unit cells, and the energy-absorbing characteristics of mechanical metamaterials are evaluated. Two topology optimization models are proposed. One maximizes the buckling-induced dissipated energy to facilitate the design of metamaterials with high energy absorption and low elastic strain energy. The other maximizes the dissipated energy with a constraint that the mechanical metamaterials should be self-recoverable. An energy interpolation scheme is employed to avoid numerical instabilities in the geometric nonlinear finite element analysis. A two-phase algorithm is proposed to find the optimized result from a uniform initial guess, and sensitivity analysis is performed. The optimized design has a larger amount of buckling-induced dissipated energy than the previously proposed structural prototypes. Moreover, the self-recoverable mechanical metamaterial is successfully designed by topology optimization.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号