首页 | 本学科首页   官方微博 | 高级检索  
     检索      

关于统计学习理论与支持向量机
引用本文:张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
作者姓名:张学工
作者单位:清华大学自动化系智能技术与系统国家重点实验室,北京
基金项目:国家自然科学基金赞助!项目编号为 6 9885 0 0 4
摘    要:模式识别、函数拟合及概率密度估计等都属于基于数据学习的问题,现有方法的重 要基础是传统的统计学,前提是有足够多样本,当样本数目有限时难以取得理想的效果.统计 学习理论(SLT)是由Vapnik等人提出的一种小样本统计理论,着重研究在小样本情况下的 统计规律及学习方法性质.SLT为机器学习问题建立了一个较好的理论框架,也发展了一种 新的通用学习算法--支持向量机(SVM),能够较好的解决小样本学习问题.目前,SLT和 SVM已成为国际上机器学习领域新的研究热点.本文是一篇综述,旨在介绍SLT和SVM的 基本思想、特点和研究发展现状,以引起国内学者的进一步关注.

关 键 词:统计学习理论  支持向量机  机器学习  模式识别
收稿时间:1998-8-24
修稿时间:1998-08-24

INTRODUCTION TO STATISTICAL LEARNING THEORY AND SUPPORT VECTOR MACHINES
ZHANG Xuegong.INTRODUCTION TO STATISTICAL LEARNING THEORY AND SUPPORT VECTOR MACHINES[J].Acta Automatica Sinica,2000,26(1):32-42.
Authors:ZHANG Xuegong
Institution:Dept.of Automation,Tsinghua University,Beijing;State Key Laboratory of Intelligent Technology and Systems of China
Abstract:Data-based machine learning covers a wide range of topics from pattern recognition to function regression and density estimation. Most of the existing methods are based on traditional statistics, which provides conclusion only for the situation where sample size is tending to infinity. So they may not work in practical cases of limited samples. Statistical Learning Theory or SLT is a small-sample statistics by Vapnik et al. , which concerns mainly the statistic principles when samples are limited, especially the properties of learning procedure in such cases. SLT provides us a new framework for the general learning problem, and a novel powerful learning method called Support Vector Machine or SVM, which can solve small-sample learning problems better. It is believed that the study of SLT and SVM is becoming a new hot area in the field of machine learning. This review introduces the basic ideas of SLT and SVM, their major characteristics and some current research trends.
Keywords:Statistical learning theory    support vector machine    machine learning  pattern recognition    
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号