首页 | 本学科首页   官方微博 | 高级检索  
     检索      

粒子群优化算法模型分析
引用本文:潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377.
作者姓名:潘峰  陈杰  甘明刚  蔡涛  涂序彦
作者单位:北京理工大学信息科学技术学院自动控制系,北京,100081
基金项目:高等学校优秀青年教师教学科研奖励计划
摘    要:粒子群优化算法在优化问题中体现出良好的性能,但目前还没有对其运动特性,尤其是参数的选择与当粒子群体陷入局部极值点导致的早熟收敛情况的详细分析.分析了PSO算法中的三种粒子模型(Gbest,Pbest,Commom模型)的运动特性,给出了Gbest模型和Pbest 模型在没有新息获取时,单信息条件下的最大搜索空间.进一步证明了在减少了Lipschitz条件约束的条件下,Common模型渐进稳定的充分条件,将算法中惯量因子的取值范围扩大到 (-1,1),并从物理上进行了解释.

关 键 词:粒子群优化算法  单信息最大搜索空间  渐进稳定性  充分条件  Lipschitz条件  
收稿时间:2005-03-10
修稿时间:2005-12-22

Model Analysis of Particle Swarm Optimizer
PAN Feng,CHEN Jie,GAN Ming-Gang,CAI Tao,TU Xu-Yan.Model Analysis of Particle Swarm Optimizer[J].Acta Automatica Sinica,2006,32(3):368-377.
Authors:PAN Feng  CHEN Jie  GAN Ming-Gang  CAI Tao  TU Xu-Yan
Institution:Department of Automatic Control; School of Information Science and Technology; Beijing Institute of Technology; Beijing 100081
Abstract:Particle swarm optimizer (PSO) exhibits good performance for optimization problems. However, there is little analysis about the kinetic characteristic, parameter selection and the situation where algorithem falls into stagnate to cause premature convergence. In the paper, the kinetic characteristic of three models of PSO (Gbest, Pbest, Common model) are analyzed. The largest covering space (LCS) of the Gbest model and the Pbest model are deduced without new information. Furthermore, under the condition that the Lip-schitz constraint is reduced, the sufficient conditions for asymptotic stability of parameters are proved. And the inertia weight w value is enhanced to (-1,1).
Keywords:Particle swarm optimizer (PSO)  the largest covering space (LCS)  asymptotic stability  sufficient condition  Lipschitz constraint  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号