首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mammographic mass segmentation: Embedding multiple features in vector-valued level set in ambiguous regions
Authors:Ying Wang [Author Vitae] [Author Vitae]  Xinbo Gao [Author Vitae] [Author Vitae]  Bin Wang [Author Vitae]
Institution:a School of Electronic Engineering, Xidian University, Xi’an, China
b School of Computer Engineering, Nanyang Technological University, Singapore
c Center for OPTical IMagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shaanxi, P.R. China
Abstract:Mammographic mass segmentation plays an important role in computer-aided diagnosis systems. It is very challenging because masses are always of low contrast with ambiguous margins, connected with the normal tissues, and of various scales and complex shapes. To effectively detect true boundaries of mass regions, we propose a feature embedded vector-valued contour-based level set method with relaxed shape constraint.In particular, we initially use the contour-based level set method to obtain the initial boundaries on the smoothed mammogram as the shape constraint. To prevent the contour leaking and meanwhile preserve the radiative characteristics of specific malignant masses, afterward, we relax the obtained shape constraint by analyzing possible valid regions around the initial boundaries. The relaxed shape constraint is then used to design a novel stopping function for subsequent vector-valued level set method. Since texture maps, gradient maps, and the original intensity map can reflect different characteristics of the mammogram, we integrate them together to obtain more accurate segmentation by incorporating the new stopping function into the newly proposed feature embedded vector-valued contour-based level set method.The experimental results suggest that the proposed feature embedded vector-valued contour-based level set method with relaxed shape constraint can effectively find ambiguous margins of the mass regions. Comparing against existing active contours methods, the new scheme is more effective and robust in detecting complex masses.
Keywords:Mass segmentation  Computer-aided diagnose  Vector-valued level set  Relaxed shape constraint  Mammograms
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号