首页 | 本学科首页   官方微博 | 高级检索  
     


Robust observer-based optimal linear quadratic tracker for five-degree-of-freedom sampled-data active magnetic bearing system
Authors:Jason Sheng Hong Tsai  Jui-Chuan Cheng  Yun-You Lin  Van-Nam Giap
Affiliation:1. Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.;2. Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, R.O.C.
Abstract:This paper presents three observer/Kalman filter identification (OKID) approaches and develops a robust observer-based optimal linear quadratic digital tracker (LQDT) for the five-degree-of-freedom (five-DOF) sampled-data active magnetic bearing (AMB) system with various disturbances. The more detailed objectives are: (i) to construct both an equivalent linear time-invariant discrete-time model and its state estimator via the proposed OKID approaches for the AMB system, which might be an unknown nonlinear time-varying unstable system with both a specified rotation speed and a sampling rate; (ii) to provide an adaptive disturbance estimation scheme, which establishes an equivalent input disturbance (EID) estimator for the AMB system with unexpected disturbances; and (iii) to develop a robust observer-based optimal LQDT for the sampled-data AMB system with both a pre-specified time-varying speed and unexpected disturbances. The developed LQDT is able to recover the displacement of the rotor to the pre-specified trajectory position whenever it deviates from such trajectory.
Keywords:Active magnetic bearing system  observer/Kalman filter identification method  equivalent input disturbance  generalised linear quadratic digital tracker
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号