首页 | 本学科首页   官方微博 | 高级检索  
     


Rutile structured SnO2 nanowires synthesized with metal catalyst by thermal evaporation method
Authors:Nam Sang-Hun  Boo Jin-Hyo
Affiliation:Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea.
Abstract:One-dimensional (1-D) nanostructures such as tubes, rods, wires, and belts have attracted considerable research activities owing to their strong application potential as components for nanosize electronic or optoelectronic devices utilizing superior optical and electrical properties. Characterizing the mechanical properties of nanostructure is of great importance for their applications in electronics, optoelectronics, sensors, actuators. Wide-bandgap SnO2 semiconducting material (Eg = 3.6 eV at room temperature) is one of the attractive candidates for optoelectronic devices operating at room temperature, gas sensors, and transparent conducting electrodes. The synthesis and gas sensing properties of semiconducting SnO2 nanomaterials have became one of important research issues since the first synthesis of SnO2 nanobelts. Considering the important application of SnO2 in sensors, these structures are not only ideal systems for fundamental understanding at the nanoscale level, but they also have potential applications as nanoscale sensors, resonator, and transducers. The structured SnO2 nanorods have been grown on silicon substrates with Au catalytic layer by thermal evporation process over 800 degrees C. The resulting sample is characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDS). The morphology and structural properties of SnO2 nanowires were measured by scanning electron microscopy and high-resolution transmission electron microscopy. The mean diameter of the SnO2 nanorods grown on Au coated silicon (100) substrate is approximately 80 nm. In addition, X-ray diffraction measurements show that SnO2 nanorods have a rutile structure. The formation of SnO2 nanowires has been attributed to the vapor-liquid-solid (VLS) growth mechanisms depending on the processing conditions. We investigated the growth behavior of the SnO2 nanowires by variation of the growth conditions such as gas partial pressure and temperature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号