首页 | 本学科首页   官方微博 | 高级检索  
     


Fabrication of high conductivity dual multi-porous poly (l-lactic acid)/polypyrrole composite micro/nanofiber film
Authors:Qiao-Zhen Yu  Zheng-wei DaiPing Lan
Affiliation:Faculty of Materials and Textiles, Jiaxing Key Lab of Modern Textile and Garment, Jiaxing University, Jiaxing, Zhejiang 314001, People''s Republic of China
Abstract:Dual multi-porous PLLA (poly(l-lactic acid))/H2SO4-doped PPy (polypyrrole) composite micro/nano fiber films were fabricated by combining electrospinning with in situ polymerization. The morphologies and structures of the resulting samples were analyzed by scanning electron microscopy (SEM). It was found that the composite micro/nano fibers exhibited a core-shell structure and the composite fiber film had a dual multi-pore structure composed of pores both in the fibers and among the fibers. Semiconductor parameter analyzer was used to characterize the electrical properties of the samples. It was interesting to find that all the PLLA/H2SO4-doped PPy composite micro/nano fiber films had higher conductivity than H2SO4-doped PPy particles when the polymerization time up to 180 min. Effects of the pyrrole synthesis conditions on the pore size and the conductivity of PLLA/PPy composite fiber film were assessed. By optimizing the polymerization conditions, the max conductivity of this composite fiber film was about 179.0 S cm−1 with a pore size of about 250 μm. The possible mechanism of PLLA/H2SO4-doped PPy composite micro/nano fiber films had much higher conductivity than H2SO4-doped PPy particles was discussed.
Keywords:PLLA/PPy composite film  Core-shell structure fiber  Conductivity  Synthesis parameters
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号