首页 | 本学科首页   官方微博 | 高级检索  
     


Matrix molecular orientation in fiber-reinforced polypropylene composites
Authors:D M Dean  L Rebenfeld  R A Register  B S Hsiao
Affiliation:(1) TRI/Princeton and Department of Chemical Engineering,, Princeton University,, Princeton,, NJ 08544,, USA;(2) Wilmington,, DE 19880,, USA
Abstract:A distinctive crystalline morphology which develops in certain fiber-reinforced thermoplastics, termed "transcrystallinity", occurs as the result of dense nucleation of polymer crystals at the surface of reinforcing fibers. As these fiber-sponsored nuclei grow, they impinge upon one another, such that crystal growth occurs essentially perpendicular to the fiber axis. Previous studies concerning transcrystallized composites have generally focused on single-fiber composites or model systems. Our interest is in elucidating the crystal orientation in conventional fiber-reinforced composites, and in quantifying the fraction of transcrystallized matrix, where present. In the present work, we develop a wide-angle X-ray scattering (WAXS) technique to investigate composites formed from an isotactic polypropylene (PP) matrix with practical loading levels of unidirectional pitch-based carbon, polyacrylonitrile (PAN)-based carbon, or aramid fibers. The transcrystalline fraction of the crystalline matrix approaches 0.95 in pitch-based carbon composites and 0.50 in the aramid composites near fiber loadings of 30 vol %. In addition, a previously-unreported mode of matrix orientation is observed in composites containing the non-transcrystallizing PAN-based carbon fibers, arising from restrictions on the isotropic growth of PP crystallites by the unidirectional fibers. This "constrained growth" orientation can coexist with the transcrystallized matrix at lower fiber loadings.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号