首页 | 本学科首页   官方微博 | 高级检索  
     


Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams
Authors:ZJ Yang  Jianfei Chen
Affiliation:a Institute of Hydraulic Structures and Water Environment, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
b Institute for Infrastructure and Environment, School of Engineering and Electronics, Edinburgh University, The King’s Buildings, Edinburgh EH9 3JN, United Kingdom
Abstract:This paper presents a finite element (FE) model for fully automatic simulation of multiple discrete crack propagation in reinforced concrete (RC) beams. The discrete cracks are modelled based on the cohesive/fictitious crack concept using nonlinear interface elements with a bilinear tensile softening constitutive law. The model comprises an energy-based crack propagation criterion, a simple remeshing procedure to accommodate crack propagations, two state variable mapping methods to transfer structural responses from one FE mesh to another, and a local arc-length algorithm to solve system equations characterised by material softening. The bond-slip behaviour between reinforcing bars and surrounding concrete is modelled by a tension-softening element. An example RC beam with well-documented test data is simulated. The model is found capable of automatically modelling multiple crack propagation. The predicted cracking process and distributed crack pattern are in close agreement with experimental observations. The load-deflection relations are accurately predicted up to a point when compressive cracking becomes dominant. The effects of bond-slip modelling and the efficiency and effectiveness of the numerical algorithms, together with the limitations of the current model, are also discussed.
Keywords:Finite element analysis  Local arc-length method  Cohesive crack model  Multiple crack propagation  Reinforced concrete beams
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号