首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of material coupling effect on structural damping of composite beams and blades
Authors:Dimitris I Chortis  Dimitris S VarelisDimitris A Saravanos
Affiliation:Department of Mechanical Engineering & Aeronautics, University of Patras, Patras 26500, Greece
Abstract:The present paper investigates the effect of material coupling on static and modal characteristics of composite structures. Incorporation of stiffness and damping coupling terms into a beam formulation yields equivalent section stiffness and damping properties. Building upon the damping mechanics, an extended beam finite element is developed capable of providing the stiffness and damping matrices of the structure. Validation cases on beams and blades demonstrate the importance of all stiffness and damping terms. Numerical results validate the predicted effect of material coupling on static characteristics of composite box-section beams. The effect of the full coupling damping matrices on modal frequencies and structural modal damping of composite beams is investigated. Box-section beams and small blade models with various ply angle laminations at the girder segments are considered. Finally, the developed finite element is applied to the prediction of the modal characteristics of a 19 m realistic wind-turbine model blade.
Keywords:Composites  Material coupling  Damping  Beams  Blades  Finite element
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号