首页 | 本学科首页   官方微博 | 高级检索  
     

Ag2Se量子点共敏化固态染料敏化太阳能电池光电性能研究
引用本文:杨英,潘德群,张政,陈甜,韩晓敏,张力松,郭学益.Ag2Se量子点共敏化固态染料敏化太阳能电池光电性能研究[J].无机材料学报,2019,34(2):137-144.
作者姓名:杨英  潘德群  张政  陈甜  韩晓敏  张力松  郭学益
作者单位:1. 中南大学 冶金与环境学院, 长沙 410083; 2. 有色金属资源循环利用湖南省重点实验室, 长沙 410083; 3. 有色金属资源循环利用湖南省工程研究中心, 长沙 410083
基金项目:国家自然科学基金(61774169);中南大学创新驱动计划项目(2016CX022);留学回国基金资助以及湖南省自然科学基金(2016JJ3140);中南大学研究生创新项目(1053320170116, 1053320170565);中南大学本科生创新项目(cx20170271, 201710533300)
摘    要:采用水相共沉积法制备Ag2Se量子点(QDs), 并与染料共敏化制备固态染料敏化太阳能电池(DSSCs)。考察了Ag2Se量子点不同敏化方式(TiO2/N719/QDs, TiO2/QDs/N719)及敏化时间(0~5 h)对DSSCs性能的影响。通过透射电子显微镜(TEM)和紫外-可见光谱图(UV-Vis)对Ag2Se量子点结构及光学性质进行了表征; 采用光调制光电流/电压谱(IMPS/VS)以及交流阻抗谱(EIS)对器件中载流子传输过程进行了研究。TiO2/QDs/N719的电池器件比TiO2/ N719/QDs具有更高的单色光量子转化效率(IPCE)及光电转化效率, 这是由于TiO2/QDs/N719可以吸附更多的量子点和染料。随着Ag2Se量子点敏化时间的延长, 光电转化效率先提高后降低, 最高达到3.97%。Ag2Se量子点在器件中起到了阻挡层作用, 可以促进电子传输, 抑制电子-空穴复合。而随着量子点敏化时间超过2 h, 电子陷入陷阱的几率增加, 导致器件的光伏性能下降。

关 键 词:Ag2Se量子点  水相共沉积法  共敏化  染料敏化太阳能电池  
收稿时间:2018-05-17
修稿时间:2018-09-20

Photovoltaic Performance of Ag2Se Quantum Dots Co-sensitized Solid-state Dye-sensitized Solar Cells
YANG Ying,PAN De-Qun,ZHANG Zheng,CHEN Tian,HAN Xiao-Min,ZHANG Li-Song,GUO Xue-Yi.Photovoltaic Performance of Ag2Se Quantum Dots Co-sensitized Solid-state Dye-sensitized Solar Cells[J].Journal of Inorganic Materials,2019,34(2):137-144.
Authors:YANG Ying  PAN De-Qun  ZHANG Zheng  CHEN Tian  HAN Xiao-Min  ZHANG Li-Song  GUO Xue-Yi
Affiliation:1. School of Metallurgy and Environment, Central South University, Changsha 410083, China;
2. Hunan Key Laboratory of Nonferrous Metal Resources Recycling, Changsha 410083, China;
3. Hunan Engineering Research Center of Nonferrous Metal Resources Recycling, Changsha 410083, China
Abstract:Ag2Se quantum dots (QDs) was synthesized by co-deposition method which was further applied as co-sensitizer in solid-state dye-sensitized solar cells (DSSCs). The effects of different sensitization methods of Ag2Se QDs (TiO2/N719/QDs, TiO2/QDs/N719) and sensitization time (0-5 h) on the performance of QDs/dye co-sensitized solar cells were studied. Structure and optical properties of Ag2Se QDs were characterized by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy (UV-Vis). Furthermore, the transmission of charge carriers of solar cell devices was characterized by photo-modulated photocurrent/voltage spectrum (IMPS/VS) and electrochemical impedance spectra (EIS). It was found that the device with TiO2/QDs/N719 showed higher incident photon-to-current efficiency (IPCE) and photoelectric efficiency than those of TiO2/N719/QDs, which was due to the fact that TiO2/QDs/N719 photoanode adsorbed more QDs and dyes. With the extension of Ag2Se QDs sensitization time, the photovoltaic properties of DSSCs firstly ascended and then descended, achieving the highest photoelectric conversion efficiency 3.97%. The incorporation of Ag2Se QDs could effectively promote the electron transport and inhibit the electron-hole recombination, which benefited from a blocking layer that QDs served in device. As sensitization time prolonged over 2 h, the photovoltaic performances of device deteriorated, which was attributed to the augmented trap sites in Ag2Se QDs layer.
Keywords:Ag2Se quantum dots  co-deposition method  co-sensitized  dye-sensitized solar cell  
本文献已被 CNKI 等数据库收录!
点击此处可从《无机材料学报》浏览原始摘要信息
点击此处可从《无机材料学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号