首页 | 本学科首页   官方微博 | 高级检索  
     


Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries
Authors:Yin  Hong  Li  Qingwei  Cao  Minglei  Zhang  Wei  Zhao  Han  Li  Chong  Huo  Kaifu  Zhu  Mingqiang
Affiliation:Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:Bi is a promising candidate for energy storage materials because of its high volumetric capacity,stability in moisture/air,and facile preparation.In this study,the electrochemical performance of nanosized-Bi-embedded one-dimensional (1D) carbon nanofibers (Bi/C nanofibers) as anodes for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was systematically investigated.The Bi/C nanofibers were prepared using a single-nozzle electrospinning method with a specified Bi source followed by carbothermal reduction.Abundant Bi nanoparticles with diameters of approximately 20 nm were homogeneously dispersed and embedded in the 1D carbon nanofibers,as confirmed by structural and morphological characterization.Electrochemical measurements indicate that the Bi/C nanofiber anodes could deliver a long cycle life for LIBs and a preferable rate performance for NIBs.The superior electrochemical performances of the Bi/C nanofiber anodes are attributed to the 1D carbon nanofiber structure and uniform distribution of Bi nanoparticles embedded in the carbon matrix.This unique embedded structure provides a favorable electron carrier and buffering matrix for the effective release of mechanical stress caused by volume change and prevents the aggregation of Bi nanoparticles.
Keywords:high volumetric capacity  Bi/C nanofibers  lithium-ion batteries  sodium-ion batteries  electrospinning
本文献已被 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号