首页 | 本学科首页   官方微博 | 高级检索  
     


Complementary Resistive Switching Using Metal–Ferroelectric–Metal Tunnel Junctions
Authors:Mengdi Qian  Ignasi Fina  Florencio Snchez  Josep Fontcuberta
Affiliation:Mengdi Qian,Ignasi Fina,Florencio Sánchez,Josep Fontcuberta
Abstract:Complementary resistive switching (CRS) devices are receiving attention because they can potentially solve the current‐sneak and current‐leakage problems of memory arrays based on resistive switching (RS) elements. It is shown here that a simple anti‐serial connection of two ferroelectric tunnel junctions, based on BaTiO3, with symmetric top metallic electrodes and a common, floating bottom nanometric film electrode, constitute a CRS memory element. It allows nonvolatile storage of binary states (“1” = “HRS+LRS” and “0” = “LRS+HRS”), where HRS (LRS) indicate the high (low) resistance state of each ferroelectric tunnel junction. Remarkably, these states have an identical and large resistance in the remanent state, characteristic of CRS. Here, protocols for writing information are reported and it is shown that non‐destructive or destructive reading schemes can be chosen by selecting the appropriate reading voltage amplitude. Moreover, this dual‐tunnel device has a significantly lower power consumption than a single ferroelectric tunnel junction to perform writing/reading functions, as is experimentally demonstrated. These findings illustrate that the recent impressive development of ferroelectric tunnel junctions can be further exploited to contribute to solving critical bottlenecks in data storage and logic functions implemented using RS elements.
Keywords:BaTiO3  complementary resistive switching  ferroelectric  ferroelectric tunnel junctions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号