首页 | 本学科首页   官方微博 | 高级检索  
     


Highly Safe Electrolyte Enabled via Controllable Polysulfide Release and Efficient Conversion for Advanced Lithium–Sulfur Batteries
Authors:Ben Tang  Han Wu  Xiaofan Du  Xiangyang Cheng  Xing Liu  Zhe Yu  Jinfeng Yang  Min Zhang  Jianjun Zhang  Guanglei Cui
Abstract:Conventional lithium–sulfur batteries often suffer from fatal problems such as high flammability, polysulfide shuttling, and lithium dendrites growth. Here, highly‐safe lithium–sulfur batteries based on flame‐retardant electrolyte (dimethoxyether/1,1,2,2‐tetrafluoroethyl 2,2,3,3‐tetrafluoropropyl ether) coupled with functional separator (nanoconductive carbon‐coated cellulose nonwoven) to resolve aforementioned bottle‐neck issues are demonstrated. It is found that this flame‐retardant electrolyte exhibits excellent flame retardancy and low solubility of polysulfide. In addition, Li/Li symmetrical cells using such flame‐retardant electrolyte deliver extraordinary long‐term cycling stability (less than 10 mV overpotential) for over 2500 h at 1.0 mA cm?2 and 1.0 mAh cm?2. Moreover, bare sulfur cathode–based lithium–sulfur batteries using this flame retardant electrolyte coupled with nanoconductive carbon‐coated cellulose separator can retain 83.6% discharge capacity after 200 cycles at 0.5 C. Under high charge/discharge rate (4 C), lithium–sulfur cells still show high charge/discharge capacity of ≈350 mAh g?1. Even at an elevated temperature of 60 °C, discharge capacity of 870 mAh g?1 can be retained. More importantly, high‐loading bare sulfur cathode (4 mg cm?2)–based lithium–sulfur batteries can also deliver high charge/discharge capacity over 806 mAh g?1 after 56 cycles. Undoubtedly, the strategy of flame retardant electrolyte coupled with carbon‐coated separator enlightens highly safe lithium–sulfur batteries at a wide range of temperature.
Keywords:bare sulfur cathodes  flame retardant  high sulfur mass loading  high temperature stability  interface stability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号