首页 | 本学科首页   官方微博 | 高级检索  
     

纤维增强复合材料层板高速冲击损伤数值模拟
引用本文:古兴瑾,许希武.纤维增强复合材料层板高速冲击损伤数值模拟[J].复合材料学报,2012,29(1):150-161.
作者姓名:古兴瑾  许希武
作者单位:南京航空航天大学 机械结构力学及控制国家重点实验室, 南京 210016
基金项目:国家自然科学基金(10672075); 南京航空航天大学博士创新基金(BCXJ06-03)
摘    要:推导了复合材料应变率相关三维本构关系, 并将其用于复合材料层板高速冲击损伤的数值模拟。该模型在复合材料层间引入界面单元模拟层间分层, 结合三维Hashin失效准则进行单层板面内损伤识别, 引入材料刚度退化, 采用非线性有限元方法, 研究了复合材料层板高速冲击的破坏过程及层板的损伤特性。数值分析结果表明, 剩余速度预报结果与实验结果吻合较好, 层板的主要损伤形式是层间分层、 基体微裂纹和纤维断裂, 减小弹体直径、 增大铺层角度和层板厚度能够有效降低层板损伤面积。 

关 键 词:复合材料    本构模型    冲击    损伤    数值模拟
收稿时间:2011-05-08
修稿时间:2011-07-11

Numerical simulation of damage in fiber reinforced composite laminates under high velocity impact
GU Xingjin,XU Xiwu.Numerical simulation of damage in fiber reinforced composite laminates under high velocity impact[J].Acta Materiae Compositae Sinica,2012,29(1):150-161.
Authors:GU Xingjin  XU Xiwu
Affiliation:State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:A 3D rate-dependent constitutive model was developed to simulate damage of laminated polymer matrix composites under high velocity impact. The cohesive elements were involved between two layers to simulate delaminateion of the composite laminate under high velocity impact. The 3D-Hashin failure criteria were used to predict the in-plane failure of composite by replacing quasi-static strength properties with rate-dependent strength properties. By using a degradation constitutive model, the main damage modes of the composite laminates which were delamination, matrix crack and fiber breakage were simulated. Parametric studies show that the prediction of the residual velocities agree well with the experimental results, and reducing diameter of the projectile or increasing ply angle and target thickness will reduce the damage area of the composite laminates under high velocity impact.
Keywords:composites  constitutive models  impact  damage  numerical simulation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《复合材料学报》浏览原始摘要信息
点击此处可从《复合材料学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号