首页 | 本学科首页   官方微博 | 高级检索  
     

近断层地震方向脉冲效应对高速铁路桥梁弹塑性反应的影响
引用本文:陈令坤,,张楠,胡超,徐庆元.近断层地震方向脉冲效应对高速铁路桥梁弹塑性反应的影响[J].振动与冲击,2013,32(15):149-155.
作者姓名:陈令坤    张楠  胡超  徐庆元
作者单位:1.扬州大学建筑科学与工程学院,扬州 225127;2.北京交通大学土木建筑工程学院,北京 100044;3.中南大学土木工程学院,长沙 410075
摘    要:基于PEER-NAG强震数据库,采用ANSYS分析软件、ANSYS-APDL语言和弯矩曲率关系计算程序,以高速铁路多跨简支梁桥为研究对象,建立了近断层脉冲型地震作用下的高速铁路桥梁全桥模型,考虑了轨道不平顺的影响,分析了结构的自振特性,计算了近/远断层地震作用下桥梁的弹塑性地震响应。计算结果表明,近断层方向脉冲型地震作用下的墩底的荷载-变形曲线呈现中间加强的特点,此时需要桥墩有更强的能量释放能力和较好的延性要求,相比远断层地震而言,近断层方向脉冲型地震作用下墩底梁体位移、墩顶位移以及墩底弯矩增大,且导致更大的塑形变形;远断层地震趋向于能量的逐渐释放过程并与较少的滞回环损伤疲劳相联系;由于近断层地震动方向脉冲效应的影响,在一些地震动的某些时段内,对结构破坏起控制作用的因素是速度或位移而不是峰值加速度;由于近断层地震较大的竖向地震动,导致梁体竖向挠度比远断层地震增加较多,《铁路工程抗震设计规范》等取竖向地震为横向的2/3左右,会导致竖向动力响应偏小,建议取竖向地震动的合理范围进行计算较为妥当。

关 键 词:近断层地震    向前方向性效应    速度脉冲效应    高速铁路桥梁    弹塑性分析  
收稿时间:2012-10-17
修稿时间:2013-1-2

Effects of to Near-Fault Directivity Pulse -like Ground Motion on Elastic-Plastic Seismic Response of High-speed Railway Bridge
Chen Ling-kun,Zhang Nan,Hu Chao,Xu Qing-yuan
.Effects of to Near-Fault Directivity Pulse -like Ground Motion on Elastic-Plastic Seismic Response of High-speed Railway Bridge[J].Journal of Vibration and Shock,2013,32(15):149-155.
Authors:Chen Ling-kun  Zhang Nan  Hu Chao  Xu Qing-yuan
Affiliation:1. College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China; 2 School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China; 3. School of Civil Engineering, Central South University, Changsha, 410075, China
Abstract:Based on the PEER-NAG Strong Ground Motion Database, the finite element model of the multi-span simply supported bridge is set up by means of ANSYS software, ANSYS-APDL language and moment-curvature program in the paper, the natural vibration properties of structure is analyzed, the elastic-plastic seismic responses of bridge subjected to the near/far-fault ground motions are calculated. The calculation results show that, for the hysteretic characteristics of the near-fault directivity pulse-like earthquake, the more just expression should be the moment-rotation relationship of pier bottom is characterized by the central strengthened hysteretic cycles at some point of the loading time-history curve corresponding to the time of the pulse, it require the bridge piers to dissipate considerable input energy in a single or relatively few plastic cycles, it is mean that the ductility capacity of the piers should be improved; the displacement of girder and pier top, moment of the pier bottom increase under near fault ground motion compared with far-fault ground motion; the energy dissipation on the bridge system subjected to a far-fault motion tends to gradually increase over a longer duration, causing an incremental build-up of input energy; as the greater vertical earthquake action of the near-fault earthquake, there are the large vertical deflection in the mid-span of girder; GB 50111-2006 Code for seismic design of railway engineering specify that the vertical earthquake force can be taken as 67% of the lateral earthquake, it's advisable that the reasonable value of vertical earthquake acceleration should be utilized to carried simulation calculation.
Keywords:Near-fault ground motionsforward directivity effectvelocity pulse effecthigh-speed railway bridgeelastic-plastic analysis
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号