首页 | 本学科首页   官方微博 | 高级检索  
     


Partial-differential-equation-constrained amplitude-based shape detection in inverse acoustic scattering
Authors:Seong-Won Na  Loukas F Kallivokas
Affiliation:(1) Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 1 University Station, C1748, Austin, TX 78712, USA
Abstract:In this article we discuss a formal framework for casting the inverse problem of detecting the location and shape of an insonified scatterer embedded within a two-dimensional homogeneous acoustic host, in terms of a partial-differential-equation-constrained optimization approach. We seek to satisfy the ensuing Karush–Kuhn–Tucker first-order optimality conditions using boundary integral equations. The treatment of evolving boundary shapes, which arise naturally during the search for the true shape, resides on the use of total derivatives, borrowing from recent work by Bonnet and Guzina 1–4] in elastodynamics. We consider incomplete information collected at stations sparsely spaced at the assumed obstacle’s backscattered region. To improve on the ability of the optimizer to arrive at the global optimum we: (a) favor an amplitude-based misfit functional; and (b) iterate over both the frequency- and wave-direction spaces through a sequence of problems. We report numerical results for sound-hard objects with shapes ranging from circles, to penny- and kite-shaped, including obstacles with arbitrarily shaped non-convex boundaries. Partial support for this work was provided by the US National Science Foundation under grant award CMS-0348484.
Keywords:Inverse acoustic scattering  Boundary integral equations  Shape detection  Total differentiation  KKT conditions
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号