首页 | 本学科首页   官方微博 | 高级检索  
     


Stainless steel bonded NbC matrix cermets using a submicron NbC starting powder
Affiliation:1. Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee, Belgium;2. NiobelCon bvba, B-2970 Schilde, Belgium;1. Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil;2. Centro de Investigación en Nanomateriales y Nanotecnología, Consejo Superior de Investigaciones Científicas, Universidad de Oviedo, Principado de Asturias, Avenida de la Vega 4-6, 33940 El Entrego, Spain;3. Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;1. School of Materials Science and Engineering, Sichuan University, Chengdu 610065, People''s Republic of China;2. Key Laboratory of Advanced Special Material & Technology, Ministry of Education, Chengdu 610065, People''s Republic of China;1. Universidade do Estado de Santa Catarina, Rua Paulo Malschitzki 200, 89.219-710 Joinville, Santa Catarina, Brazil;2. Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Madrid, Spain;1. School of Civil Engineering, The University of Sydney, NSW 2006, Australia;2. School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia;3. Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia;4. Weir Minerals Australia, Artarmon, NSW 2064, Australia;1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;2. Chongyi Zhangyuan Tungsten Co. Ltd., Ganzhou 341000, China
Abstract:The microstructure and mechanical properties of 316 L and 430 L stainless steel bonded NbC cermets were assessed. NbC starting powder mixtures with 15 and 30 vol% steel binder were pressureless vacuum sintered for 1 h at 1420 °C. The liquid forming temperature and shrinkage behaviour of the green powder compacts were investigated by differential scanning calorimetry and dilatometry. Microstructural and compositional analysis were conducted by electron probe microanalysis (EPMA) and XRD to investigate the effect of the steel binder on NbC grain growth and Cr-rich carbide precipitation. Rapid NbC grain growth was observed and the average NbC grain size decreased with increasing binder content. The residual Cr-rich carbide located at NbC grain boundaries can be eliminated by the addition of carbide forming metal precursors such as TiH2 or by a thermal annealing process of the sintered NbC cermets at 1200 °C. The hardness and fracture toughness of the NbC-steel cermets was influenced by the steel binder type and content. A maximum hardness of 13.6 GPa was measured for the NbC-15 vol% 430 L cermet, combined with a modest fracture toughness of 7.3 MPa m1/2.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号