首页 | 本学科首页   官方微博 | 高级检索  
     

高压扭转纳米结构Al-Mg铝合金的微观结构演变和位错组态
引用本文:刘满平,;蒋婷慧,;谢学锋,;刘强,;李雪峰,;Hans J. ROVEN.高压扭转纳米结构Al-Mg铝合金的微观结构演变和位错组态[J].中国有色金属学会会刊,2014,24(12):3848-3857.
作者姓名:刘满平  ;蒋婷慧  ;谢学锋  ;刘强  ;李雪峰  ;Hans J. ROVEN
作者单位:[1]江苏大学材料科学与工程学院,江苏省材料摩擦学重点实验室,镇江212013; [2]Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway; [3]Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
基金项目:Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,China; Project(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China; Project(50971087)supported by the National Natural Science Foundation of China,China; Projects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,China; Project(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,China; Project(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
摘    要:利用透射电镜(TEM)和高分辨透射电镜(HRTEM)研究高压扭转大塑性变形纳米结构Al-Mg合金的微观结构演变和位错组态。结果表明:对尺寸小于100 nm的晶粒,晶内无位错,其晶界清晰平直;而尺寸大于200 nm的大晶粒通常由几个亚晶或位错胞结构组成,其局部位错密度高达10^17 m^-2。这些位错是1/2〈110〉型60°位错,且往往以位错偶和位错环的形式出现。在高压扭转Al-Mg合金的超细晶晶粒中,用HRTEM同时观察到分别由0°纯螺型位错和60°混合位错分解产生的Shockley部分位错而形成的微孪晶和层错。这些直接证据证实,通常存在于FCC纳米晶中由晶界发射部分位错而产生孪晶和层错的变形机制,同样可以存在于超细晶FCC金属中。基于实验结果,分析了高压扭转Al-Mg合金中的局部高密度位错、位错胞、非平衡晶界、层错和孪晶等对晶粒细化的作用,提出了相应的晶粒细化机制。

关 键 词:Al-Mg铝合金  大塑性变形  高压扭转  位错组态  晶粒细化  变形机制
收稿时间:17 October 2013

Microstructure evolution and dislocation configurations in nanostructured Al-Mg alloys processed by high pressure torsion
Man-ping LIU,Ting-hui JIANG,Xue-feng XIE,Qiang LIU,Xue-feng LI,Hans J. ROVEN.Microstructure evolution and dislocation configurations in nanostructured Al-Mg alloys processed by high pressure torsion[J].Transactions of Nonferrous Metals Society of China,2014,24(12):3848-3857.
Authors:Man-ping LIU  Ting-hui JIANG  Xue-feng XIE  Qiang LIU  Xue-feng LI  Hans J ROVEN
Affiliation:Man-ping LIU, Ting-hui JIANG, Xue-feng XIE, Qiang LIU, Xue-feng LI, Hans J ROVEN (1. School of Materials Science and Engineering, Jiangsu Province Key Laboratory of Materials Tribology, Jiangsu University, Zhenjiang 212013, China; 2. Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway; 3. Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar)
Abstract:Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed.
Keywords:Al-Mg aluminum alloy  severe plastic deformation  high pressure torsion  dislocation configurations  grain refinement  deformation mechanism
本文献已被 维普 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号