首页 | 本学科首页   官方微博 | 高级检索  
     


Corrosion processes of Mg–Y–Nd–Zr alloys in Na2SO4 electrolyte
Affiliation:1. Departamento de Ciencia de Materiales, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain;2. Helmholtz Zentrum Geesthacht, Magnesium Innovation Centre, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht, Germany;3. Departamento de Aleaciones Ligeras, Fundación CIDAUT, Parque Tecnológico de Boecillo, 47151 Boecillo, Valladolid, Spain;1. Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada;2. Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada;1. National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China;2. Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China;3. Department of Stomatology, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China;1. Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice, Poland;2. A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4 St., 40-007 Katowice, Poland;3. Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, B. Krzywoustego 6 St., 44-100 Gliwice, Poland;1. CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, ENSIACET, 4 allée Emile Monso, BP44362, 31030, Toulouse cedex 4, France;2. IRT Saint Exupéry, 118 route de Narbonne - CS 44248, 31432, Toulouse, France;3. LIST, 41, rue du Brill, 4422, Belvaux, Luxembourg
Abstract:The corrosion behavior of Mg–Y–Nd–Zr (WE43 commercial alloy) was investigated in Na2SO4 electrolyte using potentiodynamic polarization curves, X-Ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) depth profiles, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyzes. SEM and EDS data show that Nd-rich precipitates are mainly located at the grains boundaries. Zr/Y-rich zones are distributed inside the most of the grains. XPS study indicates a depletion of Mg on surface that could be attributed to Mg dissolution and an enrichment of the addition element oxides. XPS and ToF-SIMS analyzes demonstrate that the corrosion films are made up of a magnesium hydroxide (Mg(OH)2) outer layer and an inner layer containing magnesium oxide (MgO), yttrium oxide (Y2O3) and hydroxide (Y(OH)3), mixed with a small amount of MgH2, zirconium oxide (ZrO2) and neodymium oxide (Nd2O3). The Y2O3 and Y(OH)3 signals increase slightly in the inner layer towards the corrosion film/alloy interface. Unlike these compounds, ZrO2 and Nd2O3 compound signals are constant inside the inner layer. It is concluded that: (i) neodymium, zirconium and yttrium play a key role in the slightly improved corrosion resistance of the alloy and (ii) the cathodic reaction is slower on WE43 than on pure Mg and AZ91.
Keywords:A  Magnesium  B  SEM  B  XPS  B  Cyclic voltammetry  C  Corrosion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号