首页 | 本学科首页   官方微博 | 高级检索  
     


A cantilever beam method for evaluating Young’s modulus and Poisson’s ratio of thermal spray coatings
Authors:E F Rybicki  J R Shadley  Y Xiong  DJ Greving
Affiliation:(1) Mechanical Engineering Department, KEH L-185, The University of Tulsa, 600 South College Avenue, 74104 Tulsa, OK, USA
Abstract:Young’s modulus and Poisson’s ratio for thermal spray coatings are needed to evaluate properties and characteristics of thermal spray coatings such as residual stresses, fracture toughness, and fatigue crack growth rates. It is difficult to evaluate Young’s modulus and Poisson’s ratio of thermal spray coatings be-cause coatings are usually thin and attached to a thicker and much stiffer substrate. Under loading, the substrate restricts the coating from deforming. Since coatings are used while bonded to a substrate, it is desirable to have a procedure to evaluate Young’s modulus and Poisson’s ratio in situ. The cantilever beam method to evaluate the Young’s modulus and Poisson’s ratio of thermal spray coat-ings is presented. The method uses strain gages located on the coating and substrate surfaces. A series of increasing loads is applied to the end of the cantilever beam. The moment at the gaged section is calcu-lated. Using a laminated plate bending theory, the Young’s modulus and Poisson’s ratio are inferred based on a least squares fit of the equilibrium equations. The method is verified by comparing predicted values of Young’s modulus and Poisson’s ratio with reference values from a three-dimensional finite ele-ment analysis of the thermal spray coated cantilever beam. The sensitivity of the method is examined with respect to the accuracy of measured quantities such as strain gage readings, specimen dimensions, ap-plied bending moment, and substrate mechanical properties. The method is applied to evaluate the Young’s modulus and Poisson’s ratio of four thermal spray coatings of industrial importance.
Keywords:cantilever beam method  elastic modulus  mechanical properties  Poisson’  s ratio
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号