首页 | 本学科首页   官方微博 | 高级检索  
     

医用稀土镁合金微观组织特征及力学行为研究进展
引用本文:张源,刘薇,刘芸,姚鑫,郑瑞宁,田亚强,于子洋,陈连生.医用稀土镁合金微观组织特征及力学行为研究进展[J].稀有金属材料与工程,2023,52(9):3065-3075.
作者姓名:张源  刘薇  刘芸  姚鑫  郑瑞宁  田亚强  于子洋  陈连生
作者单位:华北理工大学 现代冶金技术教育部重点实验室,河北 唐山 063210;华北理工大学 冶金与能源学院,河北 唐山 063210,华北理工大学 现代冶金技术教育部重点实验室,河北 唐山 063210;华北理工大学 冶金与能源学院,河北 唐山 063210,华北理工大学 现代冶金技术教育部重点实验室,河北 唐山 063210;华北理工大学 冶金与能源学院,河北 唐山 063210,华北理工大学 现代冶金技术教育部重点实验室,河北 唐山 063210;华北理工大学 冶金与能源学院,河北 唐山 063210,华北理工大学 冶金与能源学院,河北 唐山 063210,华北理工大学 现代冶金技术教育部重点实验室,河北 唐山 063210;华北理工大学 冶金与能源学院,河北 唐山 063210,华北理工大学 冶金与能源学院,河北 唐山 063210,华北理工大学 现代冶金技术教育部重点实验室,河北 唐山 063210;华北理工大学 冶金与能源学院,河北 唐山 063210
基金项目:中央引导地方科技发展资金项目(226Z1004G),河北省自然科学基金青年基金(E2020209153, E2021209106),新金属材料国家重点实验室开放基金(2020-Z12),唐山市科技项目(20130205b)
摘    要:近年来,镁合金作为生物医用金属材料受到了广泛关注,但其较差的力学强度极易导致植入物在服役周期内崩塌断裂,严重危及患者生命安全。稀土微复合金化作为当下提高可降解镁合金力学性能的有效措施,在消除镁合金杂质元素、净化熔体的同时,还可以起到促进动态再结晶、形成长周期堆垛有序相等作用。因此,本文从稀土镁合金微观结构转变及其与力学性能的基本关联出发,综述了近年来医用稀土镁合金组织特征及力学性能的研究进展,深入发掘了稀土元素、第二相及镁合金力学性能之间的本质关联,详细阐述了连续动态再结晶对稀土镁合金的强韧化机理,全面叙述了稀土元素诱导长周期堆垛有序结构对镁合金力学性能的影响规律。最后,本文对医用稀土镁合金未来的发展方向进行了展望。

关 键 词:稀土元素  可降解镁合金  微观组织  再结晶机制  力学性能
收稿时间:2023/1/13 0:00:00
修稿时间:2023/6/4 0:00:00

Research Progress on Microstructure and Mechanical Properties of Medical Rare-Earth Magnesium Alloys
Zhang Yuan,Liu Wei,Liu Yun,Yao Xin,Zheng Ruining,Tian Yaqiang,Yu Ziyang and Chen Liansheng.Research Progress on Microstructure and Mechanical Properties of Medical Rare-Earth Magnesium Alloys[J].Rare Metal Materials and Engineering,2023,52(9):3065-3075.
Authors:Zhang Yuan  Liu Wei  Liu Yun  Yao Xin  Zheng Ruining  Tian Yaqiang  Yu Ziyang and Chen Liansheng
Affiliation:Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210, China;School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China,Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210, China;School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China,Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210, China;School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China,Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210, China;School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China,School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China,Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210, China;School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China,School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China,Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210, China;School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
Abstract:Recently, magnesium alloys attract much more attention as the biomedical metallics. Unfortunately, due to their low strength, the implantation materials of Mg alloys are prone to collapse and fracture during the in-vivo/vitro service, which seriously endangers the life-safety of patients. Rare-earth micro-alloying is an effective method to enhance the mechanical properties of degradable Mg-based alloys, which cannot only eliminate the impurities and purify the melt, but also promote the dynamic recrystallization and form the long period stacking ordered phase structure. Therefore, based on the correlations between mechanical properties and microstructure transformation of Mg alloys, the research progress on the microstructure and mechanical properties of rare-earth Mg alloys was reviewed. The essential correlations among the rare-earth elements, the secondary phases, and the mechanical properties of Mg alloys were investigated. Additionally, the strengthening and toughening mechanisms of the continuous dynamic recrystallization of medical rare-earth Mg alloys were clarified. Besides, the effect of long-period stacking ordered structure induced by rare-earth elements on the mechanical properties of Mg alloys was comprehensively summarized. Finally, the development directions of medical rare-earth Mg alloys was proposed.
Keywords:rare-earth elements  degradable magnesium alloys  microstructure  recrystallization mechanism  mechanical properties
点击此处可从《稀有金属材料与工程》浏览原始摘要信息
点击此处可从《稀有金属材料与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号