首页 | 本学科首页   官方微博 | 高级检索  
     

晶粒尺寸和孪晶界间距对纳米多晶铝合金塑性变形影响的分子动力学模拟研究
引用本文:任军强,杨丹,王启,卢学峰,张旭东,薛红涛,汤富领,丁雨田.晶粒尺寸和孪晶界间距对纳米多晶铝合金塑性变形影响的分子动力学模拟研究[J].稀有金属材料与工程,2022,51(7):2436-2445.
作者姓名:任军强  杨丹  王启  卢学峰  张旭东  薛红涛  汤富领  丁雨田
作者单位:兰州理工大学,兰州理工大学,黄淮大学,兰州理工大学,西安交通大学,兰州理工大学,兰州理工大学,兰州理工大学
基金项目:the National Key R&D Program of China (Grant No. 2017YFA0700701, 2017YFA0700703), the National Natural Science Foundation of China (52061025 and 51701189), the open fund of the State Key Laboratory for Mechanical Behavior of Materials (20192104), the joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals (Grant No. 18LHPY001)
摘    要:采用分子动力学模拟方法,分别研究了晶粒尺寸和孪晶密度对纳米多晶铝合金塑性变形的影响。模拟结果表明,弛豫后的位错密度对纳米多晶Al的微观结构演变和逆Hall-Petch关系产生了重要影响。变形受晶粒大小限制,在细晶中可形成层错四面体和复杂层错结构,从而激活了晶界的辅助变形。当孪晶界间距(TBS)较大时,Shockley分位错在晶界处形核并增殖。然而,随着TBS的减小,孪晶界成为Shockley分位错的来源。孪晶界上大量的分位错形核会导致孪晶界迁移甚至消失。在塑性变形过程中还观察到形变纳米孪晶。研究结果为开发具有可调节力学性能的先进纳米多晶Al提供了理论基础。

关 键 词:纳米多晶铝  晶粒尺寸  位错  孪晶  分子动力学
收稿时间:2021/5/18 0:00:00
修稿时间:2021/7/30 0:00:00

Effect of Grain Size and Twin Boundary Spacing on Plastic Deformation of Nano-polycrystalline Al Alloy by Molecular Dynamics Study
Ren Junqiang,Yang Dan,Wang Qi,Lu Xuefeng,Zhang Xudong,Xue Hongtao,Tang Fuling and Ding Yutian.Effect of Grain Size and Twin Boundary Spacing on Plastic Deformation of Nano-polycrystalline Al Alloy by Molecular Dynamics Study[J].Rare Metal Materials and Engineering,2022,51(7):2436-2445.
Authors:Ren Junqiang  Yang Dan  Wang Qi  Lu Xuefeng  Zhang Xudong  Xue Hongtao  Tang Fuling and Ding Yutian
Affiliation:State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;State Key Laboratory for Mechanical Behavior of Materials, Xi ''an Jiaotong University, Xi ''an 710049, China,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China,School of Energy Engineering, Huanghuai University, Zhumadian 463000, China,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China,Network Information Center, Xi''an Jiaotong Uni-versity, Xi ''an 710049, China,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
Abstract:The molecular dynamics simulations were used to study the effect of grain size and twin density on the plastic deformation of nano-polycrystalline aluminum alloy. The results show that the dislocation density after relaxation is crucial to the microstructure evolution and the inverse Hall-Petch relation of the nano-polycrystalline Al. The staggered tetrahedrons and complex staggered structures are formed in the fine grains, which is attributed to the restriction of grain size. Thus, the auxiliary deformation of grain boundary is activated. The Shockley partial dislocations nucleate and multiply at the grain boundaries when the twin boundary spacing (TBS) is relatively large. However, with decreasing the TBS, the twin boundary becomes the source of the Shockley partial dislocations. A large number of partial dislocation nucleations at the twin boundary will cause the twin boundary to migrate or even disappear. The deformed nano-twins can also be observed during the plastic deformation process. This research provides theoretical basis for the development of advanced nano-polycrystalline Al alloy with adjustable mechanical properties.
Keywords:nano-polycrystalline aluminum  grain size  dislocations  twins  molecular dynamics
点击此处可从《稀有金属材料与工程》浏览原始摘要信息
点击此处可从《稀有金属材料与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号