首页 | 本学科首页   官方微博 | 高级检索  
     

纳米多晶镁在不同条件下压缩的分子动力学模拟
引用本文:杨千华,薛春,楚志兵,李玉贵,马立峰.纳米多晶镁在不同条件下压缩的分子动力学模拟[J].稀有金属材料与工程,2022,51(4):1293-1303.
作者姓名:杨千华  薛春  楚志兵  李玉贵  马立峰
作者单位:太原科技大学材料科学与工程学院,太原科技大学材料科学与工程学院,太原科技大学材料科学与工程学院,太原科技大学材料科学与工程学院,太原科技大学机械工程学院
基金项目:国家重点研发计划(2018YFB1307902);国家自然科学基金(U1710113);山西省研究生联合培养基地人才培养项目(2018JD33);山西省青年拔尖人才;山西省优秀青年基金(201901D211312);山西省高等学校创新人才优秀青年学术带头人;山西省高等学校科技成果转化培育项目(2019KJ028);山西省新兴产业领军人才;山西省研究生教育创新计划(2019SY482)
摘    要:为设计和开发具有优异力学性能的镁基纳米结构合金,本文利用Voronoi几何方法构造了晶粒随机取向的纳米多晶镁模型,利用分子动力学软件实现了不同条件下纳米多晶镁的压缩模拟,借助可视化软件对模拟结果进行了相关分析,发现:温度影响晶粒的变化趋势,随着温度升高,晶粒由细化转变为融合长大;压缩速度影响晶粒细化的时间,压缩速度增大,晶粒内部原子仍保持原有结构,只有晶粒边缘处原子位置移动,晶粒细化较晚发生,屈服强度增大,极限应变减小,弹性模量增大;纳米多晶镁中原子位置发生偏移,更易形成FCC结构,产生Shockley不全位错,Shockley不全位错与FCC结构的增长规律呈正比例。

关 键 词:纳米多晶镁  分子动力学  压缩变形    Shockley不全位错
收稿时间:2021/3/29 0:00:00
修稿时间:2021/5/7 0:00:00

Molecular dynamics simulation of compression of nanocrystalline magnesium under different conditions
Yang Qianhu,Xue Chun,Chu Zhibing,Li Yugui and Ma Lifeng.Molecular dynamics simulation of compression of nanocrystalline magnesium under different conditions[J].Rare Metal Materials and Engineering,2022,51(4):1293-1303.
Authors:Yang Qianhu  Xue Chun  Chu Zhibing  Li Yugui and Ma Lifeng
Affiliation:Taiyuan University of Science and Technology,College of materials science and Engineering,Taiyuan University of Science and Technology,College of materials science and Engineering,Taiyuan University of Science and Technology,College of materials science and Engineering,Taiyuan University of Science and Technology,College of materials science and Engineering,Taiyuan University of Science and Technology,College of Mechanical Engineering
Abstract:To design and develop magnesium-based nanostructured alloys with excellent mechanical properties, a model of nanocrystalline magnesium with random grain orientation was constructed by the Voronoi geometry method. The compression simulation of nanocrystalline magnesium under different conditions was realized by molecular dynamics software. The simulation results were analysed by visualization software. The results show that with the increase of temperature, the grain size changes from refinement to fusion growth; the results show that the compression speed affects the time of grain refinement. With the increase of compression speed, the atoms in the grain still keep the original structure, only the atoms at the edge of the grain move, the grain refinement occurs later, the yield strength increases, the ultimate strain decreases, and the elastic modulus increases; the shift of atomic position in nano polycrystalline magnesium makes it easier to form FCC structure, resulting in Shockley incomplete dislocation, which is in positive proportion to the growth rule of FCC structure.
Keywords:Nano polycrystalline magnesium  Molecular dynamics  Compression deformation  Shockley incomplete dislocation
点击此处可从《稀有金属材料与工程》浏览原始摘要信息
点击此处可从《稀有金属材料与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号