首页 | 本学科首页   官方微博 | 高级检索  
     

纳米Al粉的热脱附研究(英)
作者姓名:Queenie S M Kwok  Nichole Emery  David E G Jones
作者单位:[1]Canadian Explosives Research Laboratory, Natural Resources Canada [2]King's College London, Natural Resources Canada
摘    要:纳米Al粉有独特热行为,能增强某些含能材料的性能.然而,纳米Al粉与水的反应性高,导致纳米Al粉"老化",降低了它在含能复合材料中的作用.由于纳米Al粉的老化反应与吸附至其表面的水有关,因此应特别关注水的吸、脱附作用.本文用TG和TG-FTIR-MS研究了纳米Al粉吸附气体的热脱附.结果表明,所研究的纳米Al粉含12%(质量)的吸附气体.用FTIR和MS检测到水和CO2的脱附.用多重加热速率和等温研究,得到了吸附气体的脱附过程动力学参数.对不同方法得到的脱附活化能进行了比较.

关 键 词:物理化学  Al  纳米尺寸  热作用  脱附  动力学  热脱附  纳米  Al  脱附活化能  动力学参数  含能材料  复合材料  加热速率  FTIR
文章编号:1006-9941(2005)05-0295-06
收稿时间:2004-06-25
修稿时间:2004-09-02

Thermodesorption Studies on Al Nanopowders
Queenie S M Kwok,Nichole Emery,David E G Jones.Thermodesorption Studies on Al Nanopowders[J].Chinese Journal of Energetic Materials,2005,13(5):295-300.
Authors:Queenie S M Kwok  Nichole Emery and David E G Jones
Abstract:Aluminium (Al) nanopowder has been shown to possess unique thermal behaviour and to enhance the performance of some energetic materials (EM). However,Al nanopow der has a high reactivity with water,which causes "aging" of Al nanopowder,a nd consequent reduction in its effectiveness in EM compositions. Water adsorptio n and desorption is a particular concern,since the aging reaction of Al nanopowd ers may be related to the water adsorbed on its surface. The thermodesorption of adsorbed gases on nanometer-sized aluminium powders was investigated using The rmogravimetry (TG) and Thermogravimetry-Fourier Transform Infrared-Mass Spectr ometry (TG-FTIR-MS). The results show that the Al nanopowder studied contains 12 mass % of adsorbed gases. Desorption of water and carbon dioxide was observed by FTIR and MS. The kinetic parameters for the desorption of the adsorbed gases were determined using variable heating rate and isothermal studies. The act ivation energies of desorption obtained from the various methods are compared.
Keywords:physical chemistry  aluminium  nanometer-sized  thermal  desorption  kinetic
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《含能材料》浏览原始摘要信息
点击此处可从《含能材料》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号