首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling and simulation of multi‐scale transients for PMSG‐based wind power systems
Authors:Hua Ye  Bo Yue  Xuan Li  Kai Strunz
Affiliation:1. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China;2. State Power Economic Research Institute, State Grid, Beijing, China
Abstract:In a wind energy conversion system (WECS), multiple‐time‐scale transients that cover a wide frequency range from low‐frequency transient stability up to high‐frequency switching events are observed. This paper presents a methodology of modeling diverse transients for a permanent magnet synchronous generator (PMSG)‐based WECS within the same study. Multiple physical areas of the PMSG‐based WECS are given depending on the appearance of carriers contained in the considered waveforms. In order to eliminate different carrier frequencies, the PMSG and generator‐side voltage source converter (VSC) are modeled in the dq0‐reference frame. On the other hand, the grid‐side VSC and utility grid are dealt with in the multi‐scale model of the network in which the shift frequency is available. The switching‐function and average‐value models of the VSC are selected depending on the carrier shifted. In addition, interface between the control and electrical subsystems is redesigned to offset the computation error caused by one time‐step delay. Two test cases are performed to study the wind power fluctuations and faults ride‐through. The results show that the proposed multi‐scale model is able to simulate slow‐changing dynamic responses up to high‐frequency transients accurately while decreasing the simulation burden. In comparison with the results obtained from the EMTP (electromagnetic transients program) type simulators, the effectiveness and accuracy of the multi‐scale model are verified. Copyright © 2017 The Authors Wind Energy Published by John Wiley & Sons Ltd.
Keywords:electromagnetic transients  electromechanical transients  permanent magnet synchronous generator (PMSG)  power system modeling  wind power generation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号