首页 | 本学科首页   官方微博 | 高级检索  
     


Construction and analysis of photovoltaic directly coupled conditions in PEM electrolyzer
Affiliation:School of Automotive Studies, Tongji University, Shanghai, 201804, PR China
Abstract:The Markov model and the PEM electrolyzer system model for directly coupled photovoltaic are combined to construct an efficient and reliable working condition that fits the fluctuation characteristics of solar energy. The working condition is designed through genetic algorithm so that the average coupling efficiency of the system can reach 98.8%. Then, the durability and recovery test are conducted on the basis of the constructed conditions. It is found that the attenuation rate at the current density of 1A/cm2 under the photovoltaic fluctuating condition reached 7.8mV/h, which is twice that under the constant current condition. The charge transfer impedance (Rct) is the main factor leading to the degradation. It is proved by the recovery experiment that the increase of Rct is related to the pollution of metal ions. After pickling to remove some metal ions, Rct can be significantly reduced by 46.8% and 65.2%, respectively. After the durability test, the voltammetric charges under the photovoltaic fluctuating condition and the constant current condition are reduced by 48.3% and 19.1% It indicates that the photovoltaic fluctuation condition will accelerate the attenuation of the effective reaction area of MEA, which is irreversible even after pickling. It can be observed from the SEM images that the catalyst layer of MEA has more obvious peeling under the photovoltaic fluctuation condition, which is not conducive to material transmission and destroys the transmission channel of ions and electrons. This result can provide a reliable reference for the coupling design of PEM electrolyzer and renewable energy in the future.
Keywords:PEM electrolyzer  Renewable energy coupled hydrogen production  Fluctuating condition  Markov process model  Durability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号