首页 | 本学科首页   官方微博 | 高级检索  
     


Highly stable nanocarbon supported Pt catalyst for fuel cell via a molten salt graphitization strategy
Affiliation:Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, 109 De Ya Rd, Changsha, Hunan, 410073, PR China
Abstract:Proton exchange membrane fuel cells (PEMFCs) durability has been severely hindered by carbon support poor stability in the cathodic Pt-based catalyst. Herein, a high-surface-area nitrogen-doped graphitic nanocarbon (N-G-CA) with mesopores is developed as Pt support to address PEMFCs durability challenge. Resorcinol-formaldehyde aerogel pyrolyzed carbon aerogel is selected as N-G-CA raw material. Nitrogen atoms are introduced into carbon aerogel via NH3 heat treatment. Then, nitrogen-doped carbon aerogel is transferred into N-G-CA via heating together with transition-metal salts (one of FeCl3, FeCl2, CoCl2, or MnCl2, etc.) at 1200 °C. As ORR catalyst, Pt/N-G-CA half-wave potential only lost 10 mV, after 30, 000 cycles accelerated aging test in the rotating-desk-electrode. Only 12 mV voltage loss at 1.5 A/cm2 is observed, after 5, 000 cycles for membrane electrode. Pt/N-G-CA exhibits superior durability and activity than commercial Pt/C. High durability of Pt/N-G-CA is due to N-G-CA high graphitization extent, as well as the interactions between doping nitrogen and Pt. N-G-CA is promising as stable support for durable Pt-based catalysts in PEMFCs, thanks to enhanced carbon corrosion resistance, uniformly dispersed Pt, and strong support-metals interaction.
Keywords:Catalytic graphitization  Carbon aerogel  Catalysts support  Durability  Oxygen reduction reaction  Proton exchange membrane fuel cells
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号