首页 | 本学科首页   官方微博 | 高级检索  
     


High H2 selectivity with low coke formation for methanol steam reforming over Cu/Y1.5Ce0.84Ru0.04O4 catalyst in a microchannel plate reactor
Affiliation:1. Department of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran;2. Gas Research Division, Research Institute of Petroleum Industry, Tehran, Iran
Abstract:The synthesized novel metal oxides YxCeyRuzO4 (x = 1.5, y = 0.84, z = 0.04) which was produced by the sol-gel method was used as a support for Cu active metal on the surface of a microchannel plate reactor in the methanol steam reforming (MSR) process. The prepared catalysts were characterized by X-ray powder diffraction (XRD), BET surface area analysis (SBET), energy-dispersive X-ray analysis (EDX), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), temperature-programmed desorption (NH3-TPD), and temperature-programmed reduction (H2-TPR). High methanol conversion (99.5%) and H2 selectivity (98.7%) and low CO selectivity (1.4%) were achieved for Cu/YxCeyRuzO4 coated microchannel reactor at 250 °C. FE-SEM images and TGA curve of the spent catalyst displayed no coke formation on the surface of the catalyst after 32 h on stream at 300 °C. The low reduction temperature of Cu, high BET surface area, and high pore volume of the catalyst are considered imperative factors that cause a better dispersion of copper on the Y1.5Ce0.84Ru0.04O4 support.
Keywords:Methanol steam reforming  Composite  Copper  Hydrogen  Microchannel plate reactor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号