首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-skeletal PtPdNi nanodendrites as efficient electrocatalyst with high activity and durability towards oxygen reduction reaction
Affiliation:1. Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, PR China;2. Department of Energy & Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea;3. Department of Applied Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
Abstract:Engineering alloy nanostructures with a combination of highly active noble metals (Pt and Pd) and less electronegative non-noble metal (Ni) is found to be crucial for improving surface reactivity by enriching with active Pt sites. Herein, a multi-skeletal PtPdNi nanodendrites (NDs) was successfully formed by a simple one-pot method with structure directing agent. The modification of Pt electronic structure and their interaction due to compressive strain were explored using benchmark characterization techniques, which showed that the PtPdNi NDs possess Pt-enriched surface, corroborating to more active catalyst sites for oxygen reduction reaction (ORR) in acidic medium. The PtPdNi NDs have a higher electrochemical surface area (63 m2 g?1) and an earlier onset potential (1.01 V) than PtPd NDs, PtNi NDs, and commercial Pt/C catalysts, indicating the outstanding ORR performance. The high mass and specific activities, as well as superior durability after accelerated degradation test (ADT), highlight the remarkable electrocatalytic performance of PtPdNi NDs over others. As a result, enhancing Pt utilization through the formation of PtPdNi NDs could be a reliable strategy to improve ORR electrocatalysis for polymer electrolyte membrane fuel cell (PEMFC) applications.
Keywords:PtPdNi NDs  Pt enriched surface  Oxygen reduction reaction  Mass activity  PEMFC
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号