首页 | 本学科首页   官方微博 | 高级检索  
     


S/Se dual-doping promotes the formation of active Ni/Fe oxyhydroxide for oxygen evolution reaction of (sea)water splitting
Affiliation:1. Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, PR China;2. Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, PR China;3. Analytical & Testing Center, Jinan University, Guangzhou, 510632, PR China
Abstract:Surface reconstruction produces metal oxyhydroxide (1OOH) active sites, and promoting surface reconstruction is essential for the design of OER electrocatalysts. In this paper, we reported that a large amount of active NiFeOOH was generated in-situ on the surface of nickel-iron sulfide selenide, thus exposing more active sites and efficiently catalyzing OER. In 1 M KOH solution, NiFeOOH(S,Se) achieves an ultra-low overpotential of 195 mV at the current density of 10 mA cm?2, and the Tafel slope is only 31.99 mV dec?1, showing excellent catalytic performance. When the current density is 100  mA cm?2, the over-potential of NiFeOOH(S,Se) in KOH + seawater solution is 239 mV, which is almost equivalent to 231 mV in KOH solution. The excellent OER stability of the NiFeOOH(S,Se) catalyst in alkaline electrolytes was confirmed, and the overpotential did not change significantly after 4 days of testing in KOH + seawater solution.
Keywords:Oxygen evolution reaction  Doping  Metal oxyhydroxide  Seawater splitting  Nickel-iron sulfide selenium
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号