首页 | 本学科首页   官方微博 | 高级检索  
     


Role of functionalized graphene quantum dots in hydrogen evolution reaction: A density functional theory study
Affiliation:1. Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India;2. Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
Abstract:Rapid advances in the field of catalysis require a microscopic understanding of the catalytic mechanisms. However, in recent times, experimental insights in this field have fallen short of expectations. Furthermore, experimental searches of novel catalytic materials are expensive and time-consuming, with no guarantees of success. As a result, density functional theory (DFT) can be quite advantageous in advancing this field because of the microscopic insights it provides and thus can guide experimental searches of novel catalysts. Several recent works have demonstrated that low-dimensional materials can be very efficient catalysts. Graphene quantum dots (GQDs) have gained much attention in past years due to their unique properties like low toxicity, chemical inertness, biocompatibility, crystallinity, etc. These properties of GQDs which are due to quantum confinement and edge effects facilitate their applications in various fields like sensing, photoelectronics, catalysis, and many more. Furthermore, the properties of GQDs can be enhanced by doping and functionalization. In order to understand the effects of functionalization by oxygen and boron based groups on the catalytic properties relevant to the hydrogen-evolution reaction (HER), we perform a systematic study of GQDs functionalized with the oxygen (O), borinic acid (BC2O), and boronic acid (BCO2). All calculations that included geometry optimization, electronic and adsorption mechanism, were carried out using the Gaussian16 package, employing the hybrid functional B3LYP, and the basis set 6-31G(d,p). With the variation in functionalization groups in GQDs, we observe significant changes in their electronic properties. The adsorption energy Eads of hydrogen over O-GQD, BC2O-GQD, and BCO2-GQD is ?0.059 eV, ?0.031 eV and ?0.032 eV respectively. Accordingly, Gibbs free energy (ΔG) of hydrogen adsorption is extraordinarily near the ideal value (0 eV) for all the three types of functionalized GQDs. Thus, the present work suggests pathways for experimental realization of low-cost and multifunctional GQDs based catalysts for clean and renewable hydrogen energy production.
Keywords:Hydrogen evolution reaction  Graphene quantum dots  Functionalization  Density functional theory  Overpotential
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号