首页 | 本学科首页   官方微博 | 高级检索  
     


Cycling and engineering properties of highly compacted sodium alanate pellets
Authors:M Sulic  M Cai  S Kumar
Affiliation:1. Optimal CAE, Inc., 14492 Sheldon Road, Plymouth Township, MI 48170, USA1;2. General Motors Research and Development, 30500 Mound Road, Warren, MI 48090, USA
Abstract:Sodium alanate powder comprised of NaH and Al was doped with 3 mol% titanium chloride (TiCl3) and pelletized into highly compacted cylindrical pellets. The pelletization process was performed to improve thermal conductivity and volumetric hydrogen capacity of the metal hydride, compared to loose or tapped powder, which are vital requirements for on-board hydrogen storage applications. The pelletization process was performed over a range of 69–345 MPa (10–50 kPSI) with a 95% increase in density and improvement in thermal conductivity 18 times greater compared to powder at the maximum pelletization pressure (1.60 g/cm3 and 0.82 g/cm3; 9.09 W/m K and 0.50 W/m K, respectively). Hydrogen cycling capacities and kinetics were not adversely affected by the pelletization process although 10 cycles are required to obtain full hydrogen capacity. Pellet cycling capacity maintained a stable 4 wt% H2 over 50 cycles. Ti-doped NaH + Al pellets exhibited similar thermal cycling expansion as with the loose powder; within 30 cycles there was a 50% loss in pellet density and by 50 cycles the loss in pellet structural integrity made handling problematic.
Keywords:Sodium alanate  Hydrogen storage  Thermal conductivity  Pelletization  Expansion  Density loss
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号