首页 | 本学科首页   官方微博 | 高级检索  
     


Simulating novel gas turbine conditions for materials assessment: cascade design and operation
Authors:J Sumner  N J Simms  W Stamm  J E Oakey
Affiliation:1. Power Engineering Centre, Energy Theme, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UKj.sumner@cranfield.ac.uk;3. Power Engineering Centre, Energy Theme, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK;4. Siemens AG, Mülheim an der Ruhr, Germany
Abstract:Integrated gasification combined cycles can incorporate pre-combustion carbon capture. High-H2 syngas produces high H2O levels after combustion, potentially accelerating gas turbine component damage. Determining materials systems’ suitability for this novel environment requires exposures in representative environments. Thus, an existing 0.7?MW burner rig was modified to generate the combustion environment and incorporate a cascade of 15 air-cooled turbine blades. Computational fluid dynamic calculations using blade dimensions and flow requirements supported the cascade design and determined blade placement within the gas flow. Trials of the modified unit have shown that a simulated combusted H2-rich syngas composition was generated at gas temperatures ≤1440°C. A 1000?h exposure has been carried out with thermal barrier coated blades to demonstrate the operation of the unit.

This paper is part of a thematic issue on the 9th International Charles Parsons Turbine and Generator Conference. All papers have been revised and extended before publication in Materials Science and Technology.
Keywords:Burner rig  Cascade  Gas turbine  H2-rich syngas  Blades  Coatings  Degradation mechanisms  Pilot-scale testing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号