首页 | 本学科首页   官方微博 | 高级检索  
     


Predicting disinfection by-product formation potential in water
Authors:Baiyang Chen  Paul Westerhoff
Affiliation:a Chinese Environmental Scholars and Professionals Network, 11900 Stonehollow Drive, Austin, TX 78758, USA
b Arizona State University, School of Sustainable Engineering and The Built Environment, Room ECG-252, Tempe, AZ 85287-5306, USA
Abstract:Formation of regulated and non-regulated disinfection by-products (DBPs) is an issue at both potable water and wastewater treatment plants (W/WWTPs). Water samples from W/WWTPs across the USA were collected and DBP formation potentials (DBPFPs) in the presence of free chlorine and chloramine were obtained for trihalomethane (THM), haloacetic acid (HAA), haloacetonitrile (HAN), and N-nitrosodimethylamine (NDMA). With nearly 200 samples covering a range of dissolved organic carbon (0.6-23 mg/L), ultraviolet absorbance (0.01-0.48 cm−1 at 254 nm wavelength), and bromide (0-1.0 mg/L) levels, power function models were developed to predict the carbonaceous DBP (C-DBP) and nitrogenous DBP (N-DBP) precursors spanning 3 orders of magnitudes. The predicted THM and HAA formation potentials fitted well with the measured data (analytical variance of less than 22%). Inclusion of dissolved organic nitrogen (DON) into the HANFP model improved the predictions. NDMAFP was the most difficult one to predict based upon the selected water quality parameters, perhaps suggesting that bulk measurements such as DOC or UVA254 were not appropriate for tracking NDMAFP. These are the first such DBPFP models for wastewater systems, and among the few models that consider both C-DBPs and N-DBPs formation potentials from the same water sources.
Keywords:DBP precursor  Formation potential  THM  HAA  HAN  NDMA  Modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号