首页 | 本学科首页   官方微博 | 高级检索  
     


Changes in polycyclic aromatic hydrocarbon availability in River Tyne sediment following bioremediation treatments or activated carbon amendment
Authors:Sarah E Hale
Affiliation:School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
Abstract:Bioremediation and activated carbon (AC) amendment were compared as remediation strategies for sediment from the River Tyne containing 16.4 ± 7.3 μg/g polycyclic aromatic hydrocarbons (PAHs) and approximately 5% coal particles by total dry sediment weight. Unamended, nutrient amended (biostimulated) and nutrient and Pseudomonas putida amended (bioaugmented) sediment microcosms failed to show a significant decrease in total sediment PAH concentrations over a one month period. Polyethylene passive (PE) samplers were embedded for 21 days in these sediment microcosms in order to measure the available portion of PAHs and accumulated 4.70 ± 0.25, 12.43 ± 1.78, and 23.49 ± 2.73 μg PAHs/g PE from the unamended, biostimulated, and bioaugmented microcosms, respectively. Higher PAH uptake by PE samplers in biostimulated and bioaugmented microcosms coincided with slower degradation of spiked phenanthrene in sediment-free filtrate from these microcosms compared to filtrate from the unamended microcosms. Microbial community analysis revealed changes in the bacterial community directly following the addition of nutrients, but the added P. putida community failed to establish itself. Addition of 2% by dry sediment weight activated carbon reduced PAH uptake by PE samplers to 0.28 ± 0.01 μg PAHs/g PE, a greater than 90% reduction compared to the unamended microcosms.
Keywords:Sediment pollution  Bioremediation  Denaturing gradient gel electrophoresis  Microbial community analysis  Activated carbon amendment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号