首页 | 本学科首页   官方微博 | 高级检索  
     


A Fenton-like degradation mechanism for 1,4-dioxane using zero-valent iron (Fe) and UV light
Authors:Hyun-Seok Son
Affiliation:Department of Environmental Health, School of Public Health, Seoul National University, 28 YeonGeon-Dong, Jongro-Gu,, Seoul 110-799, Republic of Korea
Abstract:In this study, the degradation mechanism of 1,4-dioxane using zero-valent iron (Fe0) in the presence of UV light was investigated kinetically. The degradation of 1,4-dioxane in Fe0-only, photolysis, and combined Fe0 and UV reactions followed the kinetics of a pseudo-first-order model. The degradation rate constant (19 × 10−4 min−1) in the combined reaction with UV-C (4.2 mW cm−2) and Fe0 (5 mg L−1) was significantly enhanced compared to Fe0-only (4.8 × 10−4 min−1) and photolytic reactions (2.25 × 10−4 min−1), respectively. The removal efficiency of 1,4-dioxane in combined reaction with Fe0 and UV within 4 h was enhanced by increasing UV intensity at UV-C region (34% at 4.2 mW cm−2 and 89% at 16.9 mW cm−2) comparing with the removal in the combined reaction with Fe0 and UV-A (29% at 2.1 mW cm−2, and 33% at 12.6 mW cm−2). It indicates that 1,4-dioxane was degraded mostly by OH radicals in the combined reaction. The degradation patterns in both Fe0-only and combined reactions were well fitted to the Langmuir-Hinshelwood model, implying that adsorption as well as the chemical reaction occurred. The transformation of Fe0 to Fe2+ and Fe3+ was observed in the Fe0-only and combined reactions, and the transformation rate of Fe0 was improved by UV irradiation. Furthermore, the reduction of Fe3+ was identified in the combined reaction, and the reduction rate was enhanced by an increase of UV energy. Our study demonstrated that the enhancement of 1,4-dioxane removal rate occurred via an increased supply of OH radicals from the Fenton-like reaction induced by the photolysis of Fe0 and H2O, and with producing less sludge.
Keywords:Zero-valent iron   Fe2+   Fenton-like   UV   1,4-Dioxane   Langmuir-Hinshelwood
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号