首页 | 本学科首页   官方微博 | 高级检索  
     


A Comparative Study on the Influence of Ventilation on Weather- and Fire-Induced Stack Effect in the Elevator Shafts of a High-Rise Building
Authors:Lin Xue  Shouqi Yuan  Qize He
Affiliation:1.Research Center of Fluid Machinery Engineering and Technology,Jiangsu University,Zhenjiang,China;2.Shanghai Fire Research Institute of MPS,Shanghai,China;3.Mechanical Engineering,University of Texas at Austin,Austin,USA
Abstract:This work assessed the impact of ventilation on both weather- and fire-induced stack effect in an 18-story high-rise office building. Elevator shafts are considered the main route of vertical air movement. Pressure distribution induced by cold weather within the elevator shafts was calculated theoretically. Computational fluid dynamics simulations of fire in the same high-rise building under different ventilation conditions were carried out with a fire dynamics simulator. It was found that ventilation exerted a more complex impact on fire than the weather-induced stack effect. For the weather-induced stack effect, the ventilation condition of the building only affected the height of the neutral pressure plane; in fire situations, it did not only affect the height of the neutral pressure plane in a similar manner to the weather-induced stack effect, but also influenced temperature and pressure distributions in the elevator shafts. The smoke movement and the distributions of temperature and pressure in elevator shafts are also learned. The smoke movement in high rises experienced four typical stages after ignition. The ventilation condition of the fire floor influences gas flow into elevator shafts, while that of the upper floors impacts the smoke rise speed in vertical shafts. When the stack effect finally reaches steady state, the gas temperature in the shaft decreases exponentially with height. Based on this assumption, a theoretical model was presented to characterize the fire-induced stack effect in typical high rises. Results showed that the model successfully predicts the pressure distribution in high-rise buildings.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号