首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: The impact of a rhizobial inoculum
Authors:Li Xu  Ying Teng  Zhen-Gao Li  Yong-Ming Luo
Affiliation:a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
b Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
c Department of Plants, Soils, and Climate, Utah State University, Logan, Utah 84322, USA
Abstract:Polychlorinated biphenyls (PCB) are persistent pollutants in soil environments where they continue to present considerable human health risks. Successful strategies to remediate contaminated soils are needed that are effective and of low cost. Bioremediation approaches that include the use of plants and microbial communities to promote degradation of PCB have significant potential but need further assessment under field conditions. The effects of growth of alfalfa (Medicago sativa L.) and inoculation with a symbiotic nitrogen fixing bacterium (Rhizobium meliloti) on the removal of polychlorinated biphenyls (PCB) from rhizosphere soil were evaluated in a field experiment. The initial PCB content of the soil ranged from 414 to 498 µg kg1. PCB removal for the rhizosphere soil was enhanced in the planted treatments, an average of 36% decrease in PCB levels compared to a 5.4% decrease in the unplanted soil, and further enhanced when plants were inoculated with the symbiotic Rhizobium (an average of 43% decrease) when evaluated at 90 days after planting. Plant biomass production was higher in the inoculated treatment. The total PCB content was increased from 3.30 µg kg1 to 26.72 µg kg1 in plant shoots, and from 115.07 µg kg1 to 142.23 µg kg1 in roots in the inoculated treatment compared to the planted treatment. Increased colony forming units (cfu) of total heterotrophic bacteria, biphenyl-degrading bacteria and fungi were observed in the rhizosphere of inoculated plants. PCB removal from the rhizosphere soil was not significantly correlated with the direct PCB uptake by the plants in any of the treatments but was significantly correlated with the stimulation of rhizosphere microflora. Changes in the soil microbial community structure in the planted and inoculated treatment were observed by profiling of bacterial ribosomal sequences. Some bacteria, such as Flavobacterium sp., may have contributed to the effective degradation of PCB and deserve further investigation.
Keywords:Polychlorinated biphenyls  Alfalfa  Rhizobium  Rhizosphere  Bioremediation  Phytoremediation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号