首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical and experimental study of conjugate heat transfer in a horizontal air cavity
Authors:Eva Troppová  Jan Tippner  Matěj ?vehlík
Affiliation:1.Department of Wood Science, Faculty of Forestry and Wood Technology,Mendel University in Brno,Brno,Czech Republic
Abstract:The demand for general reduction of the energy consumption in civil engineering leads to more frequent use of insulating materials with air gaps or cavities. Heat transfer through a constructional part can be decreased by adding an air gap and low emissivity reflective foils to the structure. In the first part of this paper, the impacts of cavity thickness and inner surface emissivity on combined conduction, convection and radiation heat transfer was experimentally explored in the case of constructional part with a horizontal cavity subjected to constant downward heat flux. The heat flow meter Netzsch HFM 436 Lambda was used for steady-state measurements. Results suggest that the studied parameters seriously affect the combined heat transfer in the composed structure. In the second part the paper reports the numerical study of two-dimensional conjugate heat transfer in closed horizontal cavity having air as the intervening medium. Numerical models validated by related experimental results were performed to further investigate the effect of radiation heat transfer. It was found that in general, the total heat flux through the composed structure decreases with increasing air cavity thickness, which is significant especially when low emissivity inner surfaces are taking into account. The direction of heat flow (downward or upward heat flow) has a significant impact on the convection heat transfer. An important contribution from the present work is the analysis of the optimal thickness of the cavity at different boundary conditions. The optimal thickness of the enclosure with low emissivity surfaces is 16 mm when subjected to upward heat flux.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号