首页 | 本学科首页   官方微博 | 高级检索  
     


Large eddy simulation on the flow characteristics of an argon thermal plasma jet
Authors:Xu ZHOU  Xianhui CHEN  Taohong YE  Minming ZHU
Affiliation:School of Engineering Science, University of Science and Technology of China, Hefei 230022, People'sRepublic of China
Abstract:Large eddy simulations based on the CFD software OpenFOAM have been used to study the effect of Reynolds number and turbulence intensity on the flow and mixing characteristics of an argon thermal plasma jet.Detailed analysis was carried out with respect to four aspects:the average flow field,the instantaneous flow field,turbulence statistical characteristics and the self-similarity.It was shown that for the argon thermal plasma jet with low Reynolds number,increasing the turbulence intensity will increase the turbulent transport mechanism in the mixing layer rather than in the jet axis,leading to the faster development of turbulence.The effect of the turbulent transport mechanism increases with increasing Reynolds number.However,the characteristics of flow and mixing are not affected by turbulence intensity for high Reynolds number situations.It was also found that the mean axial velocity and mean temperature in the axis of the turbulent thermal plasma jet satisfy the self-similarity aspects downstream.In addition,decay constant K is 1.25,which is much smaller than that(5.7-6.1)of the turbulent cold gas jet and has nothing to do with the Reynolds number or turbulence intensity in the jet inlet.
Keywords:thermal plasma jet  mixing layer characteristics  Reynolds number  turbulence intensity  large eddy simulation
本文献已被 万方数据 等数据库收录!
点击此处可从《等离子体科学和技术》浏览原始摘要信息
点击此处可从《等离子体科学和技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号